thể tích khối lăng trụ tam giác đều

Thể tích khối lăng trụ tam giác đều là dạng bài bác xuất hiện nay tương đối nhiều nhập đề ganh đua ĐH trong năm. Vì vậy nội dung bài viết sau đây tiếp tục hỗ trợ không thiếu thốn công thức tính thể tích khối lăng trụ tam giác đều giống như bài bác tập luyện nhằm những em rất có thể tìm hiểu thêm.

1. Hình lăng trụ tam giác đều là gì?

Bạn đang xem: thể tích khối lăng trụ tam giác đều

Lăng trụ tam giác đều đó là hình lăng trụ sở hữu nhị lòng là nhị tam giác đều cân nhau.

Hình lăng trụ tam giác đều

2. Tính hóa học hình lăng trụ tam giác đều

Một số đặc điểm của hình lăng trụ tam giác đều như sau:

  • Hình lăng trụ tam giác đều phải có 2 lòng là nhị tam giác đều vì chưng nhau 

  • Các cạnh lòng vì chưng nhau

  • Các mặt mày mặt của hình lăng trụ tam giác đều là những hình chữ nhật vì chưng nhau

  • Các mặt mày mặt và nhị lòng luôn luôn vuông góc với nhau

>>Đăng ký tức thì sẽ được thầy cô ôn tập luyện hoàn toàn cỗ kỹ năng hình học tập không khí 12<<<

3. Công thức tính thể tích khối lăng trụ tam giác đều

Thể tích của khối lăng trụ tam giác đều vì chưng diện tích S của hình lăng trụ nhân với độ cao hoặc vì chưng căn bậc nhị của thân phụ nhân với hình lập phương của toàn bộ những cạnh mặt mày v, sau đó chia vớ cả cho 4.

Công thức tính thể tích khối lăng trụ tam giác đều như sau:

V = S.h = (\sqrt{3})/4a^{3}h

Trong đó:

  • V: Thể tích khối lăng trụ tam giác đều (đơn vị m^{3}).

  • S: Diện tích khối lăng trụ tam giác đều (đơn vị m^{2}).

  • H: Chiều cao khối lăng trụ tam giác đều (đơn vị m).

Thể tích khối lăng trụ tam giác đều

4. Công thức tính diện tích S khối lăng trụ tam giác đều

4.1. Tính diện tích S xung quanh

Diện tích xung xung quanh lăng trụ tam giác đều tiếp tục vì chưng tổng diện tích S những mặt mày mặt hoặc vì chưng với chu vi của lòng nhân với độ cao.

S_{xq}=P.h

Trong đó: 

  • P: chu vi đáy

  • H: chiều cao

4.2. Tính diện tích S toàn phần

Diện tích toàn phần của khối lăng trụ tam giác đều chủ yếu vì chưng bằng tổng diện tích S những mặt mày mặt và diện tích S của nhị lòng.

V= s.h= \frac{\sqrt{3}}{4a^{3}}.h

Trong đó:

  • A: chiều nhiều năm cạnh đáy

  • H: chiều cao

5. Một số bài bác thói quen thể tích lăng trụ tam giác đều (có tiếng giải chi tiết)

Câu 1: Tính thể tích khối lăng trụ tam giác đều ABC.A’B’C’ sở hữu cạnh lòng vì chưng 8cm và mặt mày phẳng phiu A’B’C’ tạo nên với lòng ABC một góc vì chưng $60^{0}$.

Giải:

Gọi I là trung điểm của BC tớ có:

AI\perp BC (theo đặc điểm lối trung tuyến của tam giác đều)

A'I\perp BC (vì A’BC là tam giác cân)

\widehat{A'BC,ABC}=60^{0}

=> AA= AI.tan60^{0}=(\frac{8\sqrt{3}}{2}).\sqrt{3}= 12 cm

Ta có: S(ABC)= (\frac{8\sqrt{3}}{4})=2\sqrt{3}

Thể tích khối lăng trụ tam giác đều ABCA’B’C’ là:

V= AA’.S(ABC)= 12.2\sqrt{3}=24\sqrt{3} (cm^{3}) (cm^{3})

Câu 2: Cho hình lăng trụ ABC.A’B’C’ lòng ABC là tam giác đều với cạnh a vì chưng 2 centimet và độ cao h vì chưng 3cm. Tính thể tích hình lăng trụ ABC.A’B’C’?

Giải:

Vì lòng của lăng trụ là tam giác đều cạnh a

V=S_{ABC}.h=\sqrt{3}.3=3\sqrt{3}(cm^{3})

Xem thêm: lớp 12 là bao nhiêu tuổi

Câu 3: Tính thể tích của khối lăng trụ tam giác đều phải có cạnh lòng vì chưng 2a và cạnh mặt mày vì chưng a?

Giải:

Vì đó là hình lăng trụ đứng nên lối cao tiếp tục vì chưng a

Đáy là tam giác đều nên:

S_{ABC}=\frac{2a^{2}\sqrt{3}}{4}=a^{2}\sqrt{3}

=> V= S_{ABC}.a=a^{2}\sqrt{3}.a=a^{3}\sqrt{3}

Nhận tức thì bí quyết ôn tập luyện hoàn toàn cỗ kỹ năng và cách thức giải từng dạng bài bác tập luyện hình học tập ko gian 


 

Câu 4: Cho hình lăng trụ tam giác đều ABC.A’B’C’. Tính thể tích khối lăng trụ này khi:

a) AB = 2 cm; AA’ = 6 cm

b) AB = 6 cm; BB’ = 8 cm

Giải:

a) Theo đề bài bác tớ có:

a= AB= 2cm

h= AA’= 6cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=6.2^{2}.\frac{\sqrt{3}}{4}=6\sqrt{3}

b) Theo đề bài bác tớ có:

a= AB= 6cm

h= BB’= 8cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=8.6^{2}.\frac{\sqrt{3}}{4}=72.\sqrt{3}(cm^{2})

Câu 5: Tính thể tích V của khối lăng trụ tam giác đều phải có toàn bộ những cạnh vì chưng a.

Giải:

Khối lăng trụ vẫn nghĩ rằng lăng trụ đứng sở hữu cạnh mặt mày vì chưng a.

Đáy là tam giác đều cạnh a.

=> V= a.\frac{a^{2}\sqrt{3}}{4}=\frac{a^{2}\sqrt{3}}{4}

Đặc biệt, thầy Tài vẫn sở hữu bài bác giảng về thể tích khối lăng trụ rất rất hoặc giành cho chúng ta học viên VUIHOC. Trong bài bác giảng, thầy Tài sở hữu share rất rất vô số cách giải bài bác đặc trưng, nhanh chóng và thú vị, chính vì vậy những em chớ bỏ dở nhé!


Trên đó là tổ hợp công thức tính thể tích khối lăng trụ tam giác đều cũng giống như các dạng bài bác tập luyện thông thường bắt gặp nhập công tác Toán 12. Nếu những em ham muốn đạt thành quả tốt nhất có thể thì nên truy vấn Vuihoc.vn và ĐK thông tin tài khoản nhằm tìm hiểu thêm những công thức toán hình 12 và luyện đề từng ngày! Chúc những em đạt thành quả cao nhập kỳ ganh đua trung học phổ thông Quốc Gia sắp tới đây.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo dõi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài bác thì thôi

⭐ Rèn tips tricks chung tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không lấy phí ngay!!

>> Xem Thêm:

Xem thêm: r trong toán học là gì

  • Công thức tính thể tích khối tròn xoe xoay và bài bác tập luyện vận dụng
  • Công thức tính thể tích khối cầu nhanh chóng và đúng chuẩn nhất
  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối trụ tròn xoe xoay và bài bác tập
  • Công thức tính thể tích khối nón và bài bác tập