Để tính đạo hàm của hàm phân thức hữu tỉ thì chúng ta dùng cộng đồng một công thức:
Bạn đang xem: đạo hàm phân thức
$\left(\dfrac{u}{v}\right)’=\dfrac{u’.v-u.v’}{v^2}$
Một số dạng quan trọng đặc biệt của hàm phân thức:
$ \left (\dfrac{1}{x}\right)’=\dfrac{-1}{x^2}$; $ \left (\dfrac{1}{u}\right)’=\dfrac{-u’}{u^2}$
Tuy nhiên cũng có thể có một số trong những hàm phân thức tất cả chúng ta hoàn toàn có thể dùng những công thức tính đạo hàm thời gian nhanh. Thầy tiếp tục rằng rõ ràng vào cụ thể từng dạng bên dưới nhé.
Các em coi tăng bài xích giảng:
- Cách tính đạo hàm của hàm căn thức
- Cách tính đạo hàm của hàm số hợp
- Cách tính đạo hàm của dung lượng giác
- Cách tính đạo hàm của hàm số logarit
1. Đạo hàm của hàm phân thức bậc 1/ bậc 1
$y=\dfrac{ax+b}{cx+d}$
Công thức tính thời gian nhanh đạo hàm: $y’=\dfrac{ad-bc}{(cx+d)^2}$
Ví dụ 1: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{2x+3}{4x+2}$
b. $y=\dfrac{-x-2}{2x+5}$
Hướng dẫn:
a. $y=\dfrac{2x+3}{4x+2}$
=> $y’=\dfrac{(2x+3)’.(4x+2)-(2x+3).(4x+2)’}{(4x+2)^2}$
=> $y’=\dfrac{2(2x+2)-(2x+3).4}{(4x+2)^2}$
=> $y’=\dfrac{8x+4-8x-12}{(4x+2)^2}$
=> $y’=\dfrac{-8}{(4x+2)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{2.2-3.4}{(4x+2)^2}$ => $y’=\dfrac{-8}{(4x+2)^2}$
b. $y=\dfrac{-x-2}{2x+5}$
=> $y’=\dfrac{(-x-2)’.(2x+5)-(-x-2)(2x+5)’}{(2x+5)^2}$
=> $y’=\dfrac{-1.(2x+5)-(-x-2).2}{(2x+5)^2}$
=> $y’=\dfrac{-2x-5+2x+4}{(2x+5)^2}$
=> $y’=\dfrac{-1}{(2x+5)^2}$
Sử dụng công thức thời gian nhanh tính đạo hàm:
$y= \dfrac{-x-2}{2x+5}$ => $y’=\dfrac{(-1).5-(-2).2}{(2x+5)^2}=\dfrac{-5+4}{(2x+5)^2}=\dfrac{-1}{(2x+5)^2}$
2. Đạo hàm của hàm phân thức bậc 2/ bậc 1
$y=\dfrac{ax^2+bx+c}{dx+e}$
Công thức tính thời gian nhanh đạo hàm: $y=\dfrac{adx^2+2aex+be-cd}{(dx+e)^2}$
Ví dụ 2: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{x^2+2x+3}{4x+5}$
b. $y=\dfrac{2x^2+3x-4}{-5x+6}$
Hướng dẫn:
a. $y’=\dfrac{(x^2+2x+3)’.(4x+5)-(x^2+2x+3)(4x+5)’}{(4x+5)^2}$
=> $y’=\dfrac{(2x+2).(4x+5)-(x^2+2x+3).4}{(4x+5)^2}$
=> $y’=\dfrac{8x^2+18x+10-4x^2-8x-12}{(4x+5)^2}$
Xem thêm: cl2 + naoh
=> $y’=\dfrac{4x^2+10x-2}{(4x+5)^2}$
Sử dụng công thức giải thời gian nhanh đạo hàm:
$y’=\dfrac{1.4x^2+2.1.5x+2.5-3.4}{(4x+5)^2}=\dfrac{4x^2+10x-2}{(4x+5)^2}$
b. $y’=\dfrac{(2x^2+3x-4)’.(-5x+6)-(2x^2+3x-4).(-5x+6)’}{(-5x+6)^2}$
=> $y’=\dfrac{(4x+3).(-5x+6)-(2x^2+3x-4).(-5)}{(-5x+6)^2}$
=> $y’=\dfrac{-20x^2+9x+18-(-10x^2-15x+20)}{(-5x+6)^2}$
=> $y’=\dfrac{-20x^2+9x+18+10x^2+15x-20)}{(-5x+6)^2}$
=> $y’=\dfrac{-10x^2+24x-2}{(-5x+6)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{2.(-5)x^2+2.2.6x+3.6-(-4)(-5)}{(-5x+6)^2}=\dfrac{-10x^2+24x-2}{(-5x+6)^2}$
3. Đạo hàm của hàm phân thức bậc 2/ bậc 2
$y=\dfrac{a_1x^2+b_1x+c_1}{a_2x^2+b_2x+c_2}$
Công thức tính thời gian nhanh đạo hàm của hàm phân thức bậc 2/ bậc 2
=> $y’=\dfrac{(a_1b_2-a_2b_1)x^2+2(a_1c_2-a_2c_1)x+b_1c_2-b_2c_1}{(a_2x^2+b_2x+c_2)^2}$
Ví dụ 3: Tính đạo hàm của hàm số sau:
a. $y=\dfrac{x^2+x-2}{-x^2+3x+2}$
Ta có:
$y’=\dfrac{(x^2+x-2)’.(-x^2+3x+2)-(x^2+x-2).(-x^2+3x+2)’}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{(2x+1).(-x^2+3x+2)-(x^2+x-2).(-2x+3)}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{-2x^3+6x^2+4x-x^2+3x+2+2x^3-3x^2+2x^2-3x-4x+6}{(-x^2+3x+2)^2}$
=> $y’=\dfrac{4x^2+8}{(-x^2+3x+2)^2}$
Sử dụng công thức tính thời gian nhanh đạo hàm:
$y’=\dfrac{[1.3-1.(-1)]x^2+2[1.2-(-2)(-1)]x+[1.2-(-2).3]}{ (-x^2+3x+2)^2 }$
=> $y’=\dfrac{4x^2+8}{(-x^2+3x+2)^2}$
4. Một số tình huống quan trọng đặc biệt khi tính đạo hàm của hàm phân thức
Ví dụ 4: Tính đạo hàm những hàm số sau:
a. $y=\dfrac{2}{x^2-2x+3}$
b. $y=\left(\dfrac{x+2}{3x-1}\right)^3$
Hướng dẫn:
a. $y’=\dfrac{-2.(x^2-2x+3)’}{(x^2-2x+3)^2}=\dfrac{-2(2x-2)}{(x^2-2x+3)^2}$
b. $y’=3.\left(\dfrac{x+2}{3x-1}\right)^2\left(\dfrac{x+2}{3x-1}\right)’= 3.\left(\dfrac{x+2}{3x-1}\right)^2.\dfrac{-7}{(3x-1)^2} $
(ý này chúng ta vận dụng công thức đạo hàm $u^{\alpha}=\alpha.u^{\alpha-1}.u’$ nhé)
Bài giảng bên trên cũng rất cụ thể và tương đối đầy đủ về những dạng toán tính đạo hàm của một số trong những hàm phân thức hữu tỉ. Nói bọn chúng nhằm tính được đạo hàm dạng này thì chúng ta chỉ việc dùng cộng đồng có một không hai một công thức $(\dfrac{u}{v})’$ là hoàn toàn có thể tính tự do rồi. Nếu chúng ta được thêm công thức tính nào là hoặc thì nên share bên dưới sườn comment nhé.
Bình luận