công thức tính thể tích hình nón

Trong công tác toán 12, thể tích khối nón là phần kỹ năng cần thiết. Hình như, những bài bác luyện thể tích khối nón xuất hiện nay thật nhiều trong những đề thi đua. Hãy nằm trong VUIHOC thăm dò hiểu những công thức tính thể tích khối nón nhằm rất có thể dễ dàng và đơn giản rộng lớn trong các công việc giải những bài bác luyện tương quan nhé!

1. Khối nón (hình nón) là gì?

Bạn đang xem: công thức tính thể tích hình nón

Một hình được gọi là hình nón (khối nón) là khối hình hình học tập không khí 3 chiều với mặt phẳng cong và mặt phẳng bằng thiên về phía bên trên. Hình nón được phân đi ra trở nên 2 phần: phần đầu nhọn là đỉnh và phần lòng đó là phần hình trụ mặt mày bằng.

Trong cuộc sống tất cả chúng ta tiếp tục phát hiện thật nhiều đồ dùng hình nón như: nón sinh nhật, que kem ốc quế,... 

Hình nón là gì và thể tích khối nón

Hình nón bao gồm với 3 tính chất gồm: một đỉnh hình tam giác, một phía tròn trĩnh là lòng hình nón và nó không tồn tại ngẫu nhiên cạnh nào là.

Chiều cao (h) đó là khoảng cách kể từ tâm vòng tròn trĩnh cho tới đỉnh hình nón. Hình được tạo ra vì như thế nửa đường kính và lối cao nhập hình nón đó là tam giác vuông.

2. Các mô hình nón thịnh hành hiện nay nay

Hình nón với 3 loại thịnh hành nhập lúc này, điều này tùy nằm trong nhập địa điểm của đỉnh ở nghiên hoặc ở trực tiếp.

  • Hình nón tròn trĩnh xoay: Là hình nón với đỉnh nối vuông góc với mặt mày lòng tâm hình trụ.

  • Hình nón cụt: Là hình nón với 2 hình trụ tuy vậy song nhau.

  • Hình nón xiên: Là hình nón với đỉnh ko kéo vuông góc với tâm hình trụ tuy nhiên rất có thể kéo từ là 1 điểm ngẫu nhiên tuy nhiên ko nên tâm của hình trụ mặt mày lòng.

Thể tích khối nón hình nón cụt

Vậy tính thể tích khối nón như vậy nào? Công thức tính thể tích khối nón được xem theo dõi công thức nào? Các chúng ta học viên hãy nằm trong theo dõi dõi phần tiếp theo sau nhé!

3. Công thức tính thể tích khối nón

Để tính được thể tích hình nón tất cả chúng ta với công thức tính thể tích khối nón như sau:

Thể tích khối nón tính vì như thế 1/3 độ quý hiếm Pi nhân với bình phương nửa đường kính lòng mặt mày nón và nhân độ cao của hình nón.

$V=\frac{1}{3}\pi R^{2}h$

Trong cơ tao có:

  • V: Thể tích hình nón
  • π: = 3,14
  • r: Bán kính 
  • h: Đường cao

Ví dụ: Tính thể tích khối nón biết khối nón có tính nhiều năm lối sinh là 5 centimet, nửa đường kính R hình trụ lòng vì như thế 3 centimet. 

Giải:

Ví dụ giải thể tích hình nón

Gọi O là đỉnh khối nón, A là vấn đề nằm trong lối tròn trĩnh lòng, H là tâm của hình trụ. Ta với HA = 3 centimet, OA = 5 centimet, 

Trong tam giác vuông OHA, tính được OH

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

$V=\frac{1}{3}\pi R^{2}h = V = 12\pi = 37,68 m^{3}$

>>>Đăng ký tức thì sẽ được thầy cô chỉ dẫn ôn luyện, cầm chắc hẳn kỹ năng khối tròn trĩnh xoay một cơ hội dễ dàng và đơn giản nhất<<<

4. Công thức tính thể tích khối nón tròn trĩnh xoay

Thể tích khối nón tròn trĩnh xoay được xem vì như thế công thức như sau:

$V=\frac{1}{3}B.h=\frac{1}{3}\pi R^{2}h$

  • B: Diện tích đáy 
  • r: Bán kính đáy 
  • h: Chiều cao hình nón

Hình nón tròn trĩnh xoay và thể tích khối nón 

5. Công thức tính thể tích khối nón cụt (hình nón cụt)

Thể tích khối nón cụt được xem vì như thế hiệu của thể tích hình nón rộng lớn và hình nón nhỏ, như sau:

$V=\frac{1}{3}\pi (r_{1}^{2}+r_{2}^{2}+r_{1}.r_{2})$

  • V: Thể tích hình nón cụt
  • $r_{1}, r_{2}$: Bán kính 2 đáy
  • h: Chiều cao 

Thể tích khối nón cụt

6. Công thức tính diện tích S xung xung quanh hình nón

Chúng tao đang được biết công thức tính thể tích khối nón, hình nón cụt, hình nón tròn trĩnh xoay. Và nhằm tính diện tích S xung xung quanh hình nón, tao cấn tính diện tích S những mặt mày xung xung quanh, xung quanh hình nón và ko bao hàm diện tích S lòng.

Diện tích xung xung quanh hình nón và thể tích khối nón 

Công thức diện tích S xung xung quanh hình nón được xem theo dõi công thức sau:

Sxq = π.r.l

Trong đó:

  • Sxq: Diện tích xung quanh
  • r: Bán kính đáy 
  • l: Độ nhiều năm lối sinh

Nắm đầy đủ tuyệt kỹ học tập xuất sắc Toán 12, khẳng định 9+ vào cụ thể từng kỳ thi đua trung riêng rẽ nhờ cỗ bí quyết độc quyền của VUIHOC ngay!!!

7. Cách xác lập lối sinh, lối cao và nửa đường kính đáy

  • Đường cao h là khoảng cách kể từ tâm mặt mày lòng cho tới đỉnh hình chóp.

  • Đường sinh l là khoảng cách từ là 1 điểm ngẫu nhiên bên trên lối tròn trĩnh lòng cho tới đỉnh hình chóp.

Do hình nón được tạo ra trở nên Khi cù một tam giác vuông xung quanh trục một cạnh góc vuông của chính nó nên rất có thể nửa đường kính lòng và lối cao là 2 cạnh góc vuông của tam giác, lối sinh là cạnh huyền. Nên lúc biết lối cao h và nửa đường kính lòng, tao tính được lối sinh vì như thế công thức như sau:

$l = \sqrt{r^{2}+h^{2}}$

Biết nửa đường kính và lối sinh, tao tính lối cao:

$h = \sqrt{l^{2}-r^{2}}$

Khi tao được biết lối cao và lối sinh, tao tính nửa đường kính lòng theo dõi công thức sau:

$r = \sqrt{l^{2}-h^{2}}$ 

8. Một số bài bác thói quen thể tích khối nón kể từ cơ phiên bản cho tới nâng cao

Bài 1: Cho khối nón với đỉnh là O có tính nhiều năm lối sinh vì như thế 5 centimet, nửa đường kính hình trụ lòng là 3 centimet. Tính thể tích khối nón.

l = 5 centimet R = 3 cm 

Gọi O là đỉnh khối nón

H là tâm hình tròn

A là vấn đề nằm trong lối tròn trĩnh đáy

Theo đề bài bác tao với OA = 5 centimet, HA = 3 cm

Trong tam giác vuông OHA, có:

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

Thể tích khối nón là: $37,68 cm^{3}$

Xem thêm: hằng đẳng thức đáng nhớ

Bài 2: Tính thể tích khối nón? sành tứ diện đều ABCD với đỉnh A và với lối tròn trĩnh lòng là lối tròn trĩnh nước ngoài tiếp tam giác BCD và những cạnh vì như thế a. 

Bài giải :

Gọi O là tâm lối tròn trĩnh nước ngoài tiếp tam giác BCD, tao với AO = h, OC = r như hình bên

Giải ví dụ thể tích khối nón

$\Rightarrow r=\frac{2}{3}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{3}$

Suy ra

$h= \sqrt{a^{2}-r^{2}}=\sqrt{a^{2}-(\frac{a\sqrt{3}}{2})^{2}}=\frac{\sqrt{2a}}{\sqrt{3}}$

Vậy thể tích khối nón là:

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.\frac{a^{2}}{3}.\frac{\sqrt{2}a}{\sqrt{3}}=\frac{\pi\sqrt{6}a^{3}}{27}$

Bài 3: Hãy tính thể tích khối nón Khi cho tới hình nón N với góc ở đỉnh vì như thế 60 chừng, mặt mày bằng qua chuyện trục của hình nón, rời hình nón theo dõi một tiết diện là tam giác với nửa đường kính lối tròn trĩnh nước ngoài tiếp tam giác vì như thế 2.

Bải giải :

Tam giác SAB đều, với góc S vì như thế 60 chừng, SA = SB. Trọng tâm tam giác là tâm của lối tròn trĩnh nước ngoài tiếp tam giác SAB.  

Phương pháp giải thể tích khối nón

Ta với nửa đường kính lối tròn trĩnh nước ngoài tiếp tam giác SAB là:

$r=\frac{2}{3}SO=2\Leftrightarrow SO=3$

Mà SO=SA.sin 60o 

$\Rightarrow SA=\frac{SO}{Sin 60^{\circ}}$

$=\frac{3}{\frac{\sqrt{3}}{2}}=2\sqrt{3}$

Bán kính của lối tròn trĩnh khối nón là:

$R=\frac{AB}{2}=\frac{2\sqrt{3}}{2}=\sqrt{3}$

Ta vận dụng công thức tính thể tích khối nón như sau :

$V=\frac{1}{3}\pi(\sqrt{3})^{2}.3=3\pi$

Vậy V khối nón là: 3 x 3.14 = 9,42 Cm3

Bài 4: Cho khối nón có tính nhiều năm lối sinh vì như thế 5cm, nửa đường kính hình trụ lòng là 3cm. Tính thể tích khối nón. Với l = 5 centimet, R = 3 cm

Giải

Gọi O là đỉnh khối nón

      H là tâm hình tròn 

      A là vấn đề nằm trong lối tròn trĩnh đáy

OA = 5cm, HA = 3cm

Trong tam giác vuông OHA,

$OH=\sqrt{OA^{2}-HA^{2}}=\sqrt{5^{2}-3^{2}}=4$

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.3^{2}.4=12\pi (cm^{3})$

Bài 5: Cho ABC vuông bên trên A, AB = 8cm, BC = 10cm, Tính thể tích khối tròn trĩnh xoay tạo ra trở nên Khi cho tới lối tất tả khúc

a) Ngân Hàng Á Châu ACB xoay quanh AB.

b) ABC xoay quanh AC.

Giải

Phương pháp giải thể tích khối nón

Trong tam giác vuông ABC,

$AC=\sqrt{BC^{2}-AB^{2}}=\sqrt{10^{2}-8^{2}}=6$ (cm)

a) Khi lối tất tả khúc Ngân Hàng Á Châu ACB xoay quanh AB tao được hình nón với độ cao h=AB=8(cm), nửa đường kính R=AC=6(cm).

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}.6^{2}.8=96\pi (cm^{3})$

b) Khi lối tất tả khúc ABC xoay quanh AC tao được hình nón với độ cao h = AC = 6(cm), nửa đường kính R = AB = 8(cm).

$V=\frac{1}{3}\pi.R^{2}.h=\frac{1}{3}\pi.8^{2}.6=128\pi (cm^{3})$

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ mất mặt gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo dõi sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài bác thì thôi

⭐ Rèn tips tricks hùn bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập demo không tính tiền ngay!!

Trên đó là toàn cỗ kỹ năng và công thức về thể tích khối nón. Hy vọng rằng sau nội dung bài viết, chúng ta học viên rất có thể vận dụng công thức Toán hình 12 nhằm giải những bài bác luyện thiệt đúng đắn. Để học tập và ôn luyện nhiều hơn nữa những phần kỹ năng lớp 12, hãy truy vấn tức thì nền tảng học tập online Vuihoc.vn và ĐK khóa đào tạo tức thì kể từ hôm nay!

>> XEM THÊM:

Xem thêm: công thức tính diện tích mặt cầu

  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối lăng trụ đứng và bài bác tập 
  • Công thức tính thể tích khối cầu nhanh chóng và đúng đắn nhất
  • Công thức tính thể tích khối tròn trĩnh xoay và bài bác luyện vận dụng
  • Công thức tính thể tích khối lăng trụ tam giác đều và bài bác tập
  • Công thức tính thể tích khối trụ tròn trĩnh xoay và bài bác tập
  • Công thức tính thể tích khối nón tròn trĩnh xoay và bài bác tập