Những hằng đẳng thức xứng đáng nhớ vững chắc thân quen gì với chúng ta . Hôm ni Kiến tiếp tục thưa kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và ở đầu cuối là hiệu nhì lập phương. Các chúng ta nằm trong tìm hiểu thêm nhé. Bạn đang xem: 7 hằng đẳng thức đáng nhớ
1. Bình phương của một tổng
Với A, B là những biểu thức tùy ý, tớ có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.
Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta sở hữu x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là những biểu thức tùy ý, tớ có: ( A - B )2 = A2 - 2AB + B2.
3. Hiệu nhì bình phương
Với A, B là những biểu thức tùy ý, tớ có: A2 - B2 = ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là những biểu thức tùy ý, tớ có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, tớ có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.
Hướng dẫn:
a) Ta có: ( 2x - 1 )3= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13
= 8x3 - 12x2 + 6x - 1
b) Ta sở hữu : x3- 3x2y + 3xy2- y3= ( x )3 - 3.x2.hắn + 3.x. y2 - y3
= ( x - hắn )3
6. Tổng nhì lập phương
Với A, B là những biểu thức tùy ý, tớ có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu hụt của hiệu A - B.
Ví dụ:
a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.
Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.
Xem thêm: d07
7. Hiệu nhì lập phương
Với A, B là những biểu thức tùy ý, tớ có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu hụt của tổng A + B.
Ví dụ:
a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương
Hướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.b) Ta sở hữu : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài tập dượt tự động luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.
Hướng dẫn:
a) sít dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.( a - b )( a + b ) = a2 - b2.
Khi bại liệt tớ sở hữu ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x= .
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi bại liệt tớ có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=
Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
- 2x2+ 4xy B. – 8y2+ 4xy
- - 8y2 D. – 6y2+ 2xy
Hướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
Xem thêm: acp
A = -8y2 + 4xy
- Hãy ghi nhớ nó nhé
Những hằng đẳng thức xứng đáng nhớ bên trên vô cùng cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy nghiên cứu và phân tích và ghi ghi nhớ nó nhé. Những đẳng thức bại liệt gom tất cả chúng ta xử lý những câu hỏi dễ dàng và khó khăn một cơ hội đơn giản và dễ dàng, chúng ta nên thực hiện đi làm việc lại nhằm bạn dạng thân thiện hoàn toàn có thể áp dụng chất lượng rộng lớn. Chúc chúng ta thành công xuất sắc và chịu thương chịu khó bên trên tuyến đường học hành. Hẹn chúng ta ở những bài xích tiếp theo
Bình luận